Math 2263, Quiz 4

You must show all work for full credit, you have 15 min to finish it.

1. (5 pt) If $x^{3}+e^{y}+\sin (z)=0$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Solution: Let $f(x, y, z)=x^{3}+e^{y}+\sin (z)$, then by chain rule we know $\frac{\partial z}{\partial x}=-\frac{f_{x}}{f_{z}}=-\frac{3 x^{2}}{\cos (z)}$ and $\frac{\partial z}{\partial y}=-\frac{f_{y}}{f_{z}}=-\frac{e^{y}}{\cos (z)}$
2. (5 pt) Use the chain rule to find $\frac{d z}{d t}$ where $z=x^{2} y, x=\cos (t), y=e^{t}$.

Solution: By chain rule, we know $\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=2 x y(-\sin (t))+x^{2}\left(e^{t}\right)=$ $(\cos (t))^{2} e^{t}-2 \sin (t) \cos (t) e^{t}$.
3. (5 pt) Find the parametric equation of the tangent line to the curve of intersection of quadratic surfaces $x^{2}+y^{2}+z^{2}=5$ and $z=2 x^{2}+y^{2}$ at the point $(1,0,2)$.
Solution: The normal vectors of two tangent planes are $\left.(2 x, 2 y, 2 z)\right|_{(1,0,2)}=$ $(2,0,4)$ and $\left.(-4 x,-2 y, 1)\right|_{(1,0,2)}=(-4,0,1)$. So the directional vector of the tangent line is just the cross product of two normal vectors which equals to $(0,-18,0)$. So the parametric equation of the tangent line is $x=1, y=$ $-18 t, z=2$.

