Math 2263, Quiz 4 You must show all work for full credit, you have 15 min to finish it.

1.(5 pt) If $x^3 + e^y + \sin(z) = 0$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. **Solution:** Let $f(x, y, z) = x^3 + e^y + \sin(z)$, then by chain rule we know $\frac{\partial z}{\partial x} = -\frac{f_x}{f_z} = -\frac{3x^2}{\cos(z)}$ and $\frac{\partial z}{\partial y} = -\frac{f_y}{f_z} = -\frac{e^y}{\cos(z)}$

2.(5 pt) Use the chain rule to find $\frac{dz}{dt}$ where $z = x^2y$, $x = \cos(t)$, $y = e^t$. **Solution:** By chain rule, we know $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} = 2xy(-\sin(t)) + x^2(e^t) = (\cos(t))^2 e^t - 2\sin(t)\cos(t)e^t$.

3.(5 pt) Find the parametric equation of the tangent line to the curve of intersection of quadratic surfaces $x^2 + y^2 + z^2 = 5$ and $z = 2x^2 + y^2$ at the point (1,0,2).

Solution: The normal vectors of two tangent planes are $(2x, 2y, 2z) |_{(1,0,2)} = (2,0,4)$ and $(-4x, -2y, 1) |_{(1,0,2)} = (-4,0,1)$. So the directional vector of the tangent line is just the cross product of two normal vectors which equals to (0, -18, 0). So the parametric equation of the tangent line is x = 1, y = -18t, z = 2.